Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For the function f(x)=(4/3)x3-8x2+16x+5, x=2 is a point of
Q. For the function
f
(
x
)
=
3
4
x
3
−
8
x
2
+
16
x
+
5
,
x
=
2
is a point of
1948
227
Application of Derivatives
Report Error
A
local maxima
0%
B
local minima
33%
C
point of inflexion
67%
D
none of these.
0%
Solution:
f
(
x
)
=
3
4
x
3
−
8
x
2
+
16
x
+
5
…
(
1
)
Differentiating with respect to
x
, we get
f
′
(
x
)
=
3
4
×
3
x
3
−
3
x
3
−
16
x
+
16
Now for maximum/minimum we put
f
′
(
x
)
=
0
⇒
x
2
−
4
x
+
4
=
0
⇒
(
x
−
2
)
2
=
0
⇒
x
=
2
f
′′
(
x
)
=
8
x
−
16
,
f
′′
(
x
)
∣
x
=
2
=
0
f
′′′
(
x
)
=
8
=
0
∴
x
=
2
is the point of inflexion