Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For k ∈ N, let (1/α(α+1)(α+2) ldots ldots(α+20)) = displaystyle∑K=020 (Ak/α+k), where α > 0 . Then the value of 100((A14+A15/A13))2 is equal to .
Q. For
k
∈
N
, let
α
(
α
+
1
)
(
α
+
2
)
……
(
α
+
20
)
1
=
K
=
0
∑
20
α
+
k
A
k
, where
α
>
0.
Then the value of
100
(
A
13
A
14
+
A
15
)
2
is equal to _______.
671
160
JEE Main
JEE Main 2021
Sequences and Series
Report Error
Answer:
9
Solution:
α
(
α
+
1
)
(
α
+
2
)
……
(
α
+
20
)
1
=
K
=
0
∑
20
α
+
k
A
k
A
14
=
(
−
14
)
(
−
13
)
......
(
−
1
)
(
1
)
…
(
6
)
1
=
14
!
⋅
6
!
1
A
15
=
(
−
15
)
(
−
14
)
……
(
−
1
)
(
1
)
…
(
5
)
1
=
15
!
⋅
5
!
1
A
13
=
(
−
13
)
……
(
−
1
)
(
1
)
……
(
7
)
1
=
13
!
⋅
7
!
−
1
A
13
A
14
=
14
!
⋅
6
!
1
×
−
13
!
×
7
!
=
14
−
7
=
−
2
1
A
13
A
15
=
−
15
!
×
5
!
1
×
−
13
!
×
7
!
=
15
×
14
42
=
5
1
100
(
A
13
A
14
+
A
13
A
15
)
2
=
100
(
−
2
1
+
5
1
)
2
=
9