Q.
For integer k, if the area of the triangle formed by the pair of lines S=3x2−2kxy+y2=0 with the line L=2x−y−6=0 is 36sq. units, then for the angle θ between the lines S=0.sinθ=
Equation of given pair of straight lines S=3x2−2kxy+y2=0 and the line L=2x−y−6=0
On solving, we get 3x2−2kx(2x−6)+(2x−6)2=0 ⇒(7−4k)x2+12(k−2)x+36=0
Let the intersection points are A(x1,y1) and B(x2,y2) ∴ The area of △ABC is 21∣∣0x1x20y1y2011<br/>∣∣=36 ⇒∣∣x1y1−x2y2∣∣=∣x2x1∣72 ∵m1+m2=2k,m1m2=3 and x1y1=m1 x2y2=m2 and ∣x1x2∣=∣7−4k∣36
So, ∣m1−m2∣=3672∣7−4k∣ ⇒(m1+m2)2−4m1m2=4(7−4k)2
(on squaring both sides) ⇒4k2−12=4(49+16k2−56k) ⇒15k2−56k+52=0 ⇒15k2−30k−26k+52=0 ⇒15k(k−2)−26(k−2)=0 ⇒k=2(∵k is an integer ) ∴tanθ=3+12k2−3=21 ⇒sinθ=51