Let the given relation defined as R={(a,b)∣sin2a+cos2b=1}
For reflexive, sin2a+cos2a=1 (∵sin2θ+cos2θ=1,∀θ∈R) ⇒aRa ⇒(a,a)∈R ⇒R is reflexive. For symmetric, sin2a+cos2b=1 ⇒1−cos2a+1−sin2b=1 ⇒sin2b+cos2a=1 ⇒ bRa
Hence, R is symmetric. For transitive
Let aRb,bRc ⇒sin2a+cos2b=1
and sin2b+cos2c=1
On adding Eqs. (i) and (ii), we get sin2a+(sin2b+cos2b)+cos2c=2 ⇒sin2a+cos2c+1=2 ....(i) ⇒sin2a+cos2c=1 ....(ii)
Hence, R is transitive also.
Therefore, relation R is an equivalence relation.