Q.
For all positive integers n>1, {x(xn−1−nan−1)+an(n−1)} is divisible by
2257
226
Principle of Mathematical Induction
Report Error
Solution:
Let P(n):x(xn−1−nan−1)+an(n−1), where n>1 P(2):x(x−2a)+a2=(x−a)2 P(3):x(x2−3a2)+2a3=x3−3a2x+2a3 ⇒P(3)=(x−a)(x2+ax−2a2)
which is divisible by (x−a)
Hence P(n) is divisible by (x−a).