Q.
For all complex numbers z1,z2 satisfying ∣z1∣=12 and ∣z2−3−4i∣=5, the minimum value of ∣z1−z2∣ is
2343
160
Complex Numbers and Quadratic Equations
Report Error
Solution:
By using property ∣z1−z2∣≥∣z1∣−∣z2∣ ∣z1−z2∣=∣z1−(z2−3−4i)−(3+4i)∣≥∣z1∣−∣z2−3−4i∣−∣3+4i∣ =12−5−5=2 ∣z1−z2∣≥2
Clearly from the figure : minimum value of ∣z1−z2∣=AB=OB−OA=12−10=2