We have, f(x)=[x]2(x2+1)
When x∈[1,2), then f(x)=2(x2+1)⇒Rf=[4,10)
When x∈[2,3), then f(x)=x2+1⇒Rf=[5,10)
When x∈[3,4), then f(x)=32(x2+1)⇒Rf=[320,334) ∴Rf=[4,334)
Clearly, for x∈[1,2) and x∈[2,3) range of f(x) has common elements ⇒f(x) is many-one ⇒f(x) is not bijective