Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For a 3 × 3 invertible matrix A satisfying the characteristic equation A 3+ pA A 2+ qA - rI =0, which of the following is/are true [Here operatornametr(A)= operatornametrace of matrix A, operatornamedet(A)= operatornamedeterminant value of matrix A ]
Q. For a
3
×
3
invertible matrix
A
satisfying the characteristic equation
A
3
+
p
A
A
2
+
q
A
−
r
I
=
0
, which of the following is/are true [Here
tr
(
A
)
=
trace
of matrix
A
,
det
(
A
)
=
determinant
value of matrix
A
]
947
148
JEE Advanced
JEE Advanced 2018
Report Error
A
p
=
−
tr
(
A
)
73%
B
q
=
2
(
tr
(
A
)
)
2
−
tr
(
A
2
)
18%
C
r
=
det
(
A
)
300%
D
A
−
1
=
(
tr
(
A
)
)
2
−
tr
(
A
2
)
−
2
(
A
−
tr
(
A
)
I
3
)
0%
Solution:
A
=
⎣
⎡
a
d
g
b
e
h
c
f
i
⎦
⎤
∣
A
−
λ
∣
=
0
⇒
∣
∣
a
−
λ
d
g
b
e
−
λ
h
c
f
i
−
λ
∣
∣
=
0
⇒
−
λ
3
+
λ
2
(
a
+
e
+
i
)
−
λ
(
a
e
+
e
i
+
ia
−
g
c
−
h
f
−
b
d
)
+
∣
A
∣
=
0
Using Cayley Hamilton,
A
3
−
A
2
tr
(
A
)
+
2
(
tr
A
)
2
−
tr
2
A
−
∣
A
∣.
I
3
=
0