We have, f(x)=ax+b is onto from [−1,1] to [0,2] ∵f(−1)=−a+b=0 f(1)=a+b=2
From Eqs. (i) and (ii), we get a=1,b=1 ∴f(x)=x+1
Now, cot(tan−171+tan−181+tan−151) cot[tan−171+tan−1(1−81×5181+51)] cot[tan−171+tan−131]⇒cot[tan−11−71×3171+31] cot[tan−121] ⇒cot(cot−12)=2 f(1)=1+1=2 ∴cot(tan−171+tan−181+tan−151)=f(1)