Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For 0 < θ < (π/2), the solution(s) of displaystyle∑ m=16 cosec Bigg(θ+((m-1)π/4) Bigg)cosec Bigg(θ+(mπ/4) Bigg)=4√2 is/are
Q. For
0
<
θ
<
2
π
, the solution(s) of
m
=
1
∑
6
cosec
(
θ
+
4
(
m
−
1
)
π
)
cosec
(
θ
+
4
mπ
)
=
4
2
is/are
2497
183
IIT JEE
IIT JEE 2009
Trigonometric Functions
Report Error
A
4
π
12%
B
6
π
7%
C
12
π
44%
D
12
5
π
37%
Solution:
For
0
<
θ
<
2
π
m
=
1
∑
6
cosec
(
θ
+
4
(
m
−
1
)
)
cosec
(
θ
+
f
r
a
c
mπ
4
)
=
4
2
⇒
m
=
1
∑
6
s
in
(
θ
+
4
(
m
−
1
)
π
)
s
in
(
θ
+
4
mπ
)
1
=
4
2
⇒
m
=
1
∑
6
s
in
4
π
{
s
in
(
θ
+
4
(
m
−
1
)
π
s
in
(
θ
+
4
mπ
)
}
s
in
[
θ
+
4
mπ
−
(
θ
+
4
(
m
−
1
)
π
)
]
⇒
m
=
1
∑
6
1/
2
co
t
(
θ
+
4
(
m
−
1
)
π
)
−
co
t
(
θ
+
4
mπ
)
=
4
2
⇒
m
=
1
∑
6
[
co
t
(
θ
+
4
(
m
−
1
)
π
)
−
co
t
(
θ
+
4
mπ
)
]
=
4
⇒
co
t
(
θ
)
−
co
t
(
θ
+
4
π
)
+
co
t
(
θ
+
4
π
)
−
co
t
(
θ
+
4
2
π
)
+
...
+
co
t
(
θ
+
4
5
π
)
−
co
t
(
θ
+
4
6
π
)
=
4
⇒
co
tθ
−
co
t
(
2
3
π
+
θ
)
=
4
⇒
co
tθ
+
t
an
θ
=
4
⇒
t
a
n
2
θ
−
4
t
an
θ
+
1
=
0
⇒
(
t
an
θ
−
2
2
)
2
−
3
=
0
⇒
(
t
an
θ
−
2
3
)
(
t
an
θ
−
2
−
3
)
=
0
⇒
t
an
θ
=
2
−
3
⇒
t
an
θ
=
2
+
3
⇒
θ
=
12
π
;
θ
=
12
5
π
[
∵
θ
∈
(
0
,
2
π
)
]