Consider 0∫sin2xsin−1(t)dt+0∫cos2xcos−1(t)dt
Let I=f(x) after in tegrating and putting the limits. f′(x)=sin−1sin2x(2sinxcosx)−0 +cos−1cos2x(−2cosxsinx)−0 ∴f′(x)=0 ⇒f(x)=C (constant)
Now, we find f(x) at x=4π ∴I=0∫1/2sin−1tdt+0∫1/2cos−1tdt =0∫1/2(sin−1t+cos−1t)dt =0∫1/22πdt=4π=C ∴f(x)=4π ∴ Required integration =4π