Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the value of p, for which f(x)= begincases((4x-1)3/ sin ((x)p) log e 1+((x2)3) x ≠ 0 12( log /e) 4)3, x=0 endcases is continuous at x=0.
Q. Find the value of
p
, for which
f
(
x
)
=
⎩
⎨
⎧
s
i
n
(
p
x
)
l
o
g
e
{
1
+
(
3
x
2
)
}
(
4
x
−
1
)
3
,
12
(
lo
g
e
4
)
3
,
x
=
0
x
=
0
is continuous at
x
=
0
.
72
177
Continuity and Differentiability
Report Error
Answer:
4.00
Solution:
x
→
0
lim
sin
(
x
/
p
)
lo
g
e
(
1
+
3
x
2
)
(
4
x
−
1
)
3
=
12
(
lo
g
e
4
)
3
x
→
0
lim
(
(
x
/
p
)
s
i
n
(
x
/
p
)
)
(
p
x
)
(
x
2
/3
l
o
g
(
1
+
(
x
2
/3
)
)
)
x
2
/3
(
x
4
x
−
1
)
3
x
3
=
12
(
lo
g
e
4
)
3
3
p
(
lo
g
e
4
)
3
=
12
(
lo
g
e
4
)
3
p
=
4