Key Idea: The torque of a force is the cross product of r and F in the same order. Given: r=7i+3j^+k^,F=−3i^+j^+5k^τ=r×F=(7i^+3j^+k^)×(−3i^+j+5k^)=∣∣i^7−3j^31k^15∣∣=i^(15−1)j^(35+3)+k^(7+9)=14i^−38j^+16k^ Alternative: τ=r×F=(7i^+3j^+k^)×(−3i^+j^+5k^)=−21(i^×i^)+7(i^×j^)+35(i^×k^)−9(j^×i^)+3(j^×j^)+15(j^×k^)−3(k^×i^)+(k^×j^)+5(k^×k^)=0+7k^−35j^+9k^+0+15i^−3j^−i^=0=14i^−38j^+16k^