Let us write Sn=5+11+19+29+...+an−1+an...(i)
or Sn=5+11+19+...+an−2+an−1+an...(ii)
Subtracting (i) and (ii), we get 0=5+[6+8+10+12+...(n−1) terms]−an
or an=5+2(n−1)[12+(n−2)×2] =5+(n−1)(n+4)=n2+3n+1
Hence Sn=k=1∑nak =k=1∑n(k2+3k+1) =k=1∑nk2+3k=1∑nk+n =6n(n+1)(2n+1)+23n(n+1)+n =3n(n+2)(n+4).