arccos(π2arccosx)=arcsin(π2arcsinx) cos−1(π2(2π−sin−1x))=sin−1(π2sin−1x) cos−1(1−π2sin−1x)=sin−1(π2sin−1x)
Let π2sin−1x=α where α∈[0,1] think! ⇒cos−1(1−α)=sin−1α ⇒sin−12α−α2=sin−1α⇒2α−α2=α⇒2α−α2=α2 ⇒2α=2α2
Hence α is either 0 or 1 .
If α=0 then x=0
if α=1 then x=1
hence sum of all possible value of x is 1