Q.
Find the modulus of the sum of all solutions to (x2+3x+1)x2+2x−8=1.
249
81
Complex Numbers and Quadratic Equations
Report Error
Answer: 7
Solution:
(x2+3x+1)x2+2x−8=1 is true if
(i) the exponent =0 and base is not zero,
(ii) the base =1, or
(iii) the base =−1 and the exponent is even.
(i) x2+2x−8=0⇒(x+4)(x−2)=0⇒x=−4,2
(ii) x2+3x+1=1⇒x2+3x=0⇒x(x+3)=0⇒x=−3,0
(iii) x2+3x+1=−1⇒x2+3x+2=0⇒(x+1)(x+2)=0⇒x=−2,−1.
Now, check the exponent. If x=−2⇒x2+2x−8 is even; if x=−1⇒x2+2x−8 is odd; therefore case (iii) produces the solution -2 only.
The sum of all the solutions =−4+2+(−3)+0+(−2)=−7
Hence modulus is 7 .