Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the greatest value of ln (x) ln (z) provides that ln (x)+ log y(z)=3 and ln (y)+ log x(z)= 4 where x, y, z>1
Q. Find the greatest value of
ln
(
x
)
ln
(
z
)
provides that
ln
(
x
)
+
lo
g
y
(
z
)
=
3
and
ln
(
y
)
+
lo
g
x
(
z
)
=
4 where
x
,
y
,
z
>
1
55
141
JEE Advanced
JEE Advanced 2018
Report Error
Answer:
5.33
Solution:
Suppose
ln
(
x
)
=
a
,
ln
(
y
)
=
b
,
ln
(
z
)
=
c
Since
x
,
y
,
z
>
1
Hence
a
+
(
c
/
b
)
=
3
,
b
+
(
c
/
a
)
=
4
ab
+
c
=
3
b
=
4
a
Suppose
a
=
3
u
,
b
=
4
u
(
u
>
0
)
then
c
=
4
a
−
ab
=
12
u
−
12
u
2
ln
x
ln
z
=
a
c
=
3
u
.12
u
(
1
−
u
)
=
18
u
2
(
u
−
2
u
)
≤
18
(
3
u
+
u
+
(
2
−
2
u
)
3
)
=
18
(
3
2
)
3
=
3
16