Given line is 2x−3=1y−3=1z−0=t(say)…(i)
Any point on the line (i) is P(3+2t,3+t,t)
Direction ratios of OP are <3+2t−0, 3+t−0, t−0>
i.e. <3+2t, 3+t, t>.
Since, OP makes angle 3π with (i), we get cos3π=22+12+12(3+2t)2+(3+t)2+t2∣2⋅(3+2t)+1⋅(3+t)+1⋅t∣ ⇒21=66t2+18t+18∣6t+9∣ ⇒6(6t2+18t+18)=4(36t2+108t+81) ⇒t2+3t+2=0 ⇒t=−1 or −2.
Substituting these values of t, the two possible positions of P are (1,2,−1) and (−1,1,−2). Hence, the required lines are 1−0x−0=2−0y−0=−1−0z−0 and −1−0x−0=1−0y−0=−2−0z−0
i.e. 1x=2y=−1z and −1x=1y=−2z.