Q.
f(x) is a polynomial of degree 6 which decreases in the interval (0,∞) and increases in the interval (−∞,0). If f′(2)=0,f′(0)=0,f′′(0)=0,f(0)=1 and f(1)−f(−1)=58, then −3(f(1)+f(−1)) equals
Since, f′(x)=kx3(x−2)2=kx3(x2−4x+4) f′(x)=k(x5−4x4+4x3) ∴f(x)=k(6x6−54x5+x4)+c
Also f(0)=1⇒c=1.
and f(1)−f(−1)=−58k=58 ⇒k=−1.
So f(1)+f(−1)=37k+2c=−37+2=−31