Let Δ=∣∣abax+bybcbx+cyax+bybx+cy0∣∣ =∣∣ab0bc0ax+bybx+cy−(ax2+2bxy+cy2)∣∣
[Applying R3→R3−xR1−yR2] =(b2−ac)(ax2+2bxy+cy2)
Now, b2−ac<0 and a<0 ⇒ Discriminant of ax2+2bxy+cy2 is negative and a<0. ⇒ax2+2bxy+cy2<0 for all x,y∈R [See Quadratics] ⇒Δ=(b2−ac)(ax2+2bxy+cy2)>0.