Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Extremities of the latus rectum of the ellipse (x2/a2)+(y2/b2)=1 (a>b) having a given major axis 2a lies on
Q. Extremities of the latus rectum of the ellipse
a
2
x
2
+
b
2
y
2
=
1
(
a
>
b
)
having a given major axis 2a lies on
2088
202
Conic Sections
Report Error
A
x
2
=
a
(
a
−
y
)
B
y
2
=
a
(
a
+
x
)
C
y
2
=
a
(
a
−
x
)
D
None of these
Solution:
Let
a
2
x
2
+
b
2
y
2
=
1
be an ellipse with eccentricity
e
,
then ends of L.R are
(
a
e
,
±
a
b
2
)
and
(
−
a
e
,
±
a
b
2
)
Let
x
1
=
a
e
and
y
1
=
b
2
/
a
⇒
y
1
=
a
a
2
(
1
−
e
2
)
⇒
a
y
1
=
1
−
(
a
x
1
)
2
⇒
x
2
=
a
(
a
−
y
)