Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Evaluate: ∫(x3+x/x4-9)dx
Q. Evaluate :
∫
x
4
−
9
x
3
+
x
d
x
11706
209
Integrals
Report Error
A
4
1
l
o
g
∣
∣
x
4
−
9
∣
∣
+
12
1
l
o
g
∣
∣
x
2
−
3
x
2
+
3
∣
∣
+
C
14%
B
4
1
l
o
g
∣
∣
x
4
−
9
∣
∣
−
12
1
l
o
g
∣
∣
x
2
+
3
x
2
−
3
∣
∣
+
C
21%
C
4
1
l
o
g
∣
∣
x
4
−
9
∣
∣
+
12
1
l
o
g
∣
∣
x
2
+
3
x
2
−
3
∣
∣
+
C
56%
D
None of these
8%
Solution:
Let
I
=
∫
x
4
−
9
x
3
+
x
d
x
⇒
I
=
∫
x
4
−
9
x
3
d
x
+
∫
x
4
−
9
x
d
x
=
I
1
+
I
2
+
C
(
s
a
y
)
, where
I
1
=
∫
x
4
−
9
x
3
d
x
and
I
2
=
∫
x
4
−
9
x
d
x
putting
x
4
−
9
=
t
in
I
1
⇒
4
x
3
d
x
=
d
t
, we get
I
1
=
4
1
∫
t
1
d
t
=
4
1
l
o
g
∣
∣
x
4
−
9
∣
∣
Now,
I
2
=
∫
x
4
−
9
x
d
x
=
∫
(
x
2
)
2
−
3
2
x
d
x
putting
x
2
=
t
⇒
2
x
d
x
=
d
t
, we get
I
2
=
2
1
∫
t
2
−
3
2
d
t
=
2
1
⋅
2
×
3
1
l
o
g
∣
∣
t
+
3
t
−
3
∣
∣
=
12
1
l
o
g
∣
∣
x
2
+
3
x
2
−
3
∣
∣
Hence,
I
=
4
1
l
o
g
∣
∣
x
4
−
9
∣
∣
+
12
1
l
o
g
∣
∣
x
2
+
3
x
2
−
3
∣
∣
+
C