Let I=∫(x+1)3(x−1)exdx ⇒I=∫{(x+1)3x+1−2}exdx =∫{(x+1)21−(x+1)32}exdx ∫ex⋅(x+1)21dx−2∫ex(x+1)31dx
Applying integrating by parts, we get =((x+1)21ex−∫ex(x+1)3(−2)dx) −2∫ex(x+1)31dx =(x+1)2ex+C Note We can use the formula ∫ex[f(x)+f′(x)]dx=exf(x)+C