Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Evaluate ∫ limits0π / 2 (x sin x cos x/ cos 4 x+ sin 4 x) d x.
Q. Evaluate
0
∫
π
/2
c
o
s
4
x
+
s
i
n
4
x
x
s
i
n
x
c
o
s
x
d
x
.
1529
195
IIT JEE
IIT JEE 1985
Integrals
Report Error
A
B
C
D
Solution:
Let
I
=
0
∫
π
/2
c
o
s
4
x
+
s
i
n
4
x
x
s
i
n
x
⋅
c
o
s
x
d
x
⇒
I
=
0
∫
π
/2
s
i
n
4
(
2
π
−
x
)
+
c
o
s
4
(
2
π
−
x
)
(
2
π
−
x
)
s
i
n
(
2
π
−
x
)
⋅
c
o
s
(
2
π
−
x
)
d
x
⇒
I
=
0
∫
π
/2
c
o
s
4
x
+
s
i
n
4
x
(
2
π
−
x
)
⋅
s
i
n
x
c
o
s
x
d
x
⇒
I
≡
2
π
0
∫
π
/2
s
i
n
4
x
+
c
o
s
4
x
s
i
n
x
c
o
s
x
d
x
−
0
∫
π
/2
s
i
n
4
x
+
c
o
s
4
x
x
s
i
n
x
⋅
c
o
s
x
d
x
=
2
π
0
∫
π
/2
s
i
n
4
x
+
c
o
s
4
x
s
i
n
x
⋅
c
o
s
x
d
x
−
I
⇒
2
I
=
2
π
0
∫
π
/2
t
a
n
4
x
+
1
t
a
n
x
⋅
s
e
c
2
x
d
x
⇒
2
I
=
2
π
⋅
2
1
0
∫
π
/2
1
+
(
t
a
n
2
x
)
2
1
d
(
tan
2
x
)
⇒
2
I
=
4
π
⋅
[
tan
−
1
t
]
0
∞
=
4
π
(
tan
−
1
∞
−
tan
−
1
0
)
[where,
t
=
tan
2
x
]
⇒
I
=
16
π
2