We have, I=∫0π5+4cosx1dx <br/><br/>=∫0π5+4(1+tan22x1−tan22x)1dx<br/><br/> <br/><br/><br/><br/>=∫0π5(1+tan22x)+4(1−tan22x)1+tan22xdx<br/><br/>=∫0π9+tan22x1+tan22xdx=∫0π9+tan22xsec22xdx<br/><br/><br/><br/>
Let tan2x=t⇒21sec22xdx=dt
Also, x=0⇒t=0 and x=π⇒t=∞ ∴I=∫0∞9+t2dt ∴I=2∫0∞32+t2dt ∴I=32[tan−13t]0∞=32[tan−1∞−tan−10] =32(2π−0)=3π