1461
190
J & K CETJ & K CET 2013Integrals
Report Error
Solution:
Let l=∫(x+3)(x+1)23x−2dx
By partial fraction (x+3)(x+1)2(3x−2)=x+3A+(x+1)B+(x+1)2C ..(i) ⇒(3x−2)=A(x+1)2+B(x+3)(x+1)+C(x+3) =A(x2+1+2x)+B(x2+4x+3)+C(x+3) =(A+B)x2+(2A+4B+C)x+(A+3B+3C)
On comparing the like powers of x, we get A+B=0 .. (ii) 2A+4B+C=3 .. (iii)
and A+3B+3C=−2 ..(iv)
On multiplying Eq. (iii) by 3and then subtracting it from Eq. (iv), we get 6A+12B+3C=9A+3B+3C=2−−−+______________5A+9B=11 .. (v)
From Eqs. (ii) and (v), we get B=411 and A=4−11
From Eq. (iii), C=3−2A−4B =3−2(4−11)−4(411) =3+422−444=3−422=3−211 =−25 ∴ From Eq. (i), we get (x+3)(x+1)2(3x−2)=4(x+3)−11+4(x+1)11.2(x+1)2−5 ⇒∫(x+3)(x+1)2(3x−2)dx =∫{4(x+3)−11+4(x+1)11−2(x+1)25}dx =−411log∣x+3∣+411log∣x+1∣+2(x+1)5+C =411log∣∣x+3x+1∣∣+2(x+1)5+C