Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Evaluate: ∫(3x+1/(x-2)2(x+2))dx
Q. Evaluate :
∫
(
x
−
2
)
2
(
x
+
2
)
3
x
+
1
d
x
1264
191
Integrals
Report Error
A
16
5
l
o
g
∣
x
−
2
∣
+
4
(
x
−
2
)
7
+
16
5
l
o
g
∣
x
+
2
∣
+
C
18%
B
16
5
l
o
g
∣
(
x
−
2
)
∣
+
4
(
x
−
2
)
3
+
16
5
l
o
g
∣
x
−
2
∣
+
C
22%
C
16
5
l
o
g
∣
x
−
2
∣
−
4
(
x
−
2
)
7
−
16
5
l
o
g
∣
x
+
2
∣
+
C
48%
D
None of these
12%
Solution:
Let
(
x
−
2
)
2
(
x
+
2
)
3
x
+
1
=
x
−
2
A
+
(
x
−
2
)
2
B
+
x
+
2
C
............
(
i
)
⇒
3
x
+
1
=
A
(
x
−
2
)
(
x
+
2
)
+
B
(
x
+
2
)
+
C
(
x
−
2
)
2
.....
(
ii
)
Put
x
=
2
in (ii), we get
7
=
4
B
⇒
B
=
4
7
Put
x
=
−
2
in (ii), we get
−
5
=
16
C
⇒
C
=
−
16
5
Comparing coefficients of
x
2
on both sides of
(
ii
)
, we get
A
+
C
=
0
⇒
A
=
−
C
⇒
A
=
16
5
∴
I
=
∫
(
x
−
2
)
2
(
x
+
2
)
3
x
+
1
d
x
=
16
5
∫
x
−
2
1
d
x
+
4
7
∫
(
x
−
2
)
2
1
d
x
−
16
5
∫
x
+
2
1
d
x
⇒
I
=
16
5
l
o
g
∣
x
−
2
∣
−
4
(
x
−
2
)
7
−
16
5
l
o
g
∣
x
+
2
∣
+
C