Let the first part = y, then other part = (20−y). f(y)=(20−y)y3 or f(y)=20y3−y4
For maximum or minimum, put f′(y)=0 ⇒f′(y)=60y2−4y3=0 ⇒4y2(15−y)=0 ⇒y=0ory=15
Now, f′′(y)=120y−12y2 ⇒f′′(15)=120(15)−12(15)2<0 ∴f(y) is maximum at y=15
Hence, 20 can be divided in 15 and 5