Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle ∑ r = 0n ((r2/r + 1))nCr is equal to
Q.
r
=
0
∑
n
(
r
+
1
r
2
)
n
C
r
is equal to
2275
182
NTA Abhyas
NTA Abhyas 2020
Binomial Theorem
Report Error
A
(
n
+
1
)
2
n
−
1
(
n
2
+
n
+
2
)
−
1
B
(
n
+
1
)
2
n
−
1
(
n
2
−
n
−
2
)
+
1
C
(
n
+
1
)
2
n
−
1
(
n
2
−
n
+
2
)
−
1
D
(
n
+
1
)
2
n
−
1
(
n
2
+
n
−
2
)
+
1
Solution:
r
=
0
∑
n
(
r
+
1
r
2
)
n
C
r
=
r
=
0
∑
n
(
r
+
1
r
2
−
1
+
1
)
n
C
r
=
r
=
0
∑
n
(
(
r
−
1
)
+
r
+
1
1
)
n
C
r
=
r
=
0
∑
n
r
(
⋅
)
n
C
r
−
(
r
=
0
∑
n
)
n
C
r
+
r
=
0
∑
n
(
r
+
1
1
)
n
C
r
{
r
+
1
1
n
C
r
=
n
+
1
1
n
+
1
C
r
+
1
an
d
r
⋅
n
C
r
=
n
⋅
n
−
1
C
r
−
1
}
=
r
=
1
∑
n
n
⋅
n
−
1
C
r
−
1
−
2
n
+
r
=
0
∑
n
n
+
1
1
⋅
n
+
1
C
r
+
1
=
n
{
n
−
1
C
0
+
n
−
1
C
1
+
...
+
n
−
1
C
n
−
1
}
−
2
n
+
n
+
1
1
{
n
+
1
C
1
+
n
+
1
C
2
+
...
+
n
+
1
C
n
+
1
}
=
n
⋅
2
n
−
1
−
2
n
+
n
+
1
1
(
2
n
+
1
−
1
)
=
(
n
+
1
)
1
{
2
n
+
1
−
1
+
2
n
−
1
(
n
−
2
)
(
n
+
1
)
}
=
(
n
+
1
)
2
n
−
1
(
n
2
−
n
+
2
)
−
1