Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle limn→ ∞ (2K+4K+6K+......+(2n)K/nK+1) is equal to
Q.
n
→
∞
lim
n
K
+
1
2
K
+
4
K
+
6
K
+
......
+
(
2
n
)
K
is equal to
2695
180
Integrals
Report Error
A
2
K
0%
B
K
+
1
2
K
67%
C
K
+
1
1
17%
D
none of these.
17%
Solution:
Given limit
=
n
→
∞
lim
2
K
n
K
+
1
1
K
+
2
K
+
3
K
+
......
+
n
K
=
2
K
n
→
∞
lim
n
1
(
(
n
1
)
K
+
(
n
2
)
K
+
(
4
3
)
K
+
……
(
h
r
)
K
+
……
(
n
n
)
K
)
=
2
K
lim
h
→
0
r
h
=
h
∑
nh
h
⋅
(
r
h
)
K
=
2
K
0
∫
1
x
K
d
x
=
2
K
∣
∣
K
+
1
x
K
+
1
∣
∣
0
1
=
K
+
1
2
K