2714
186
AIEEEAIEEE 2005Limits and Derivatives
Report Error
Solution:
n→∞lim[n1sec2n21+n22sec2n24+n23sec2n29+....+n1sec21] is equal to n→∞limn2rsec2n2r2=n→∞limn1.nrsec2n2r2 ⇒ Given limit is equal to value of integral 0∫1xsec2x2dx
or 210∫12xsecx2dx=210∫1sec2tdt [put x2=t ] =21(tant)01=21tan1.