Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle ∫ ((1+x)ex/cot(xex)) dx is equal to
Q.
∫
co
t
(
x
e
x
)
(
1
+
x
)
e
x
d
x
is equal to
2680
209
KEAM
KEAM 2015
Integrals
Report Error
A
l
o
g
∣
cos
(
x
e
x
)
∣
+
C
11%
B
l
o
g
∣
co
t
(
x
e
−
x
)
∣
+
C
17%
C
l
o
g
∣
sec
(
x
e
−
x
)
∣
+
C
13%
D
l
o
g
∣
cos
(
x
e
−
x
)
∣
+
C
11%
E
l
o
g
∣
sec
(
x
e
x
)
∣
+
C
11%
Solution:
Let
I
=
∫
c
o
t
(
x
e
x
)
(
1
+
x
)
e
x
d
x
Put
x
e
x
=
t
⇒
(
x
e
x
+
e
x
)
d
x
=
d
t
⇒
(
x
+
1
)
e
x
d
x
=
d
t
∴
I
=
∫
c
o
t
t
d
t
=
∫
tan
t
d
t
=
lo
g
∣
sec
t
∣
+
C
Again, put
t
=
x
e
x
⇒
I
=
lo
g
∣
sec
(
x
e
x
)
∣
+
C