Let u=tan−1(1−x2x) and v=sin−1(3x−4x3)
put x=sinθ, then u=tan−1(1−sin2θsinθ)
and v=sin−1(3sinθ−4sin3θ) ⇒u=tan−1(cosθsinθ)
and v=sin−1(sin3θ) ⇒u=tan−1(tanθ)
and v=sin−1(sin3θ) ⇒u=θ and v=3θ ⇒u=sin−1x and v=3sin−1x
On differentiating both sides w.r.t. x, we get dxdu=1−x21 and dxdv=3×1−x21 ∴dvdu=dxdvdxdu=1−x231−x21 =31