We know that cot−1(cosα)+tan−1(cosα)=2π… (i)
and given that cot−1cosα−tan−1cosα=x… (ii)
On adding Eqs. (i) and (ii), we get 2cot−1(cosα)=2π+x ⇒cosα=cot(4π+2x) ⇒cosα=1+cot2xcot2x−1 ⇒cosα=1+sinx1−sinx ⇒1+tan22α1−tan22α=1+sinx1−sinx ⇒sinx=tan22α
Alternate solution ∵cot−1(cosα)−tan−1(cosα)=x ⇒tan−1(cosα1)−tan−1(cosα)=x ⇒tan−1(1+cos(x1⋅cosαcosα1−cosα)=x ⇒2cosα1−cosα=tanx ⇒cotx=1−cosα2cosα cosecx=1+cot2x ∴cosecx=1−cosα1+cosα ⇒sinx=1+cosα1−cosα=tan22α