3731
215
Complex Numbers and Quadratic Equations
Report Error
Solution:
Let z=1+i3−16 =1+i3−16×1−i31−i3 =1+3−16(1−i3) =−4(1−i3) =−4+i43
Let −4=rcosθ,43=rsinθ
By squaring and adding, we get 16+48=r2(cos2θ+sin2θ) ⇒r2=64 ⇒r=8
Hence, cos θ=2−1,
sin θ=23 ⇒θ=π−3π=32π
Thus, the required polar form is 8(cos32π+isin32π)