Q. Consider two different infinite geometric progressions with their sums and as


If and then answer the following:
Common ratio of the second G.P. is

 606  128 Sequences and Series Report Error

Solution:

Let the two GP's are


now
.....(1) and
also =b R\operatorname{ar}^2=\frac{1}{8}a - b = R - ra + r = b + Rar = bR(1 - r) r = (1 - R)R\therefore (r - R)(r + R) = r - R\therefore r+R=1 (r \neq R):r=Ra = b \Rightarrowr + R =1 (1)+(2) \Rightarrow a+b=2-(r+R) \Rightarrow a+b=18 ar ^2=1 8(1-r) r ^2=18 r ^2-8 r ^3-1=0 \Rightarrow 8 r^3-8 r ^2+1=0 (2 r -1)\left(4 r ^2-2 r -1\right)=0 (\text { as } r \neq 1 / 2 \text { as in this case } R \text { will also be } 1 / 2 \text { which is not possible) } \therefore 4 r^2-2 r-1=0r =\frac{2 \pm \sqrt{20}}{8}=\frac{1+\sqrt{5}}{4}\frac{1-\sqrt{5}}{4}r =\frac{1-\sqrt{5}}{4}R =1-\frac{1-\sqrt{5}}{4}=\frac{3+\sqrt{5}}{4}>1r=\frac{1-\sqrt{5}}{4}\therefore r =\frac{1+\sqrt{5}}{4}R =1-\frac{1+\sqrt{5}}{4}=\frac{3-\sqrt{5}}{4} a =1- r =\frac{3-\sqrt{5}}{4} ; b =\frac{1+\sqrt{5}}{4} ; a + b =1$