Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Consider the real valued function h: 0,1,2 ldots ldots ldots 100 arrow R such that h(0)=5, h(100)=20 and satisfying h(p)=(1/2) h(p+1)+h(p-1) for every p=1,2 ldots ldots .99. Then the value of h(1) is
Q. Consider the real valued function
h
:
{
0
,
1
,
2
………
100
}
→
R
such that
h
(
0
)
=
5
,
h
(
100
)
=
20
and satisfying
h
(
p
)
=
2
1
{
h
(
p
+
1
)
+
h
(
p
−
1
)}
for every
p
=
1
,
2
……
.99
. Then the value of
h
(
1
)
is
7433
231
WBJEE
WBJEE 2021
Report Error
A
5.15
B
5.5
C
6
D
6.15
Solution:
h
(
p
)
=
2
1
(
h
(
p
+
1
)
+
h
(
p
−
1
))
⇒
h
(
p
−
1
)
,
h
(
p
)
,
h
(
p
+
1
)
are in A.P.
h
(
100
)
=
h
(
0
)
+
99
d
⇒
99
20
−
5
=
d
⇒
d
=
99
15
⇒
h
(
1
)
=
h
(
0
)
+
d
=
5
+
99
15
=
5.15