Q.
Consider the polynomial P(x)=x3+bx2+cx+d, whose roots are equal to the roots of 12x3−4x2−3x+6=0 multiplied by k. If k is the smallest number which will make b,c and d integers, then find the value of (b+c+d).
140
86
Complex Numbers and Quadratic Equations
Report Error
Answer: 97
Solution:
Given P=x3+bx2+cx+d ....(1)
and Q=12x3−4x2−3x+6=0....(2)
Let the roots of (2) be x and roots of (1) be y, then y=kx⇒x=ky(y is the root of P(x) and x is the root of Q(x)) 12(ky)3−4(ky)2−3(ky)+6=0 (replacing y→x and multiplying k3 ) 12y3−4y2k−3yk2+6k3=0 must be identical to x3+bx2+cx+d=0
Hence, 112=b−4k=c−3k2=d6k3 b=−3k;c=−4k2;d=2k3
minimum value of k is 6 b=−36=−2;c=−46=−9;d=26×6×6=108 b+c+d=108−11=97