Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Consider the integral In=∫0(π/4) ( sin (2 n-1) x/ sin x) d x, then the value of I20-I19 is
Q. Consider the integral
I
n
=
∫
0
4
π
s
i
n
x
s
i
n
(
2
n
−
1
)
x
d
x
, then the value of
I
20
−
I
19
is
131
163
NTA Abhyas
NTA Abhyas 2022
Report Error
A
20
1
B
19
−
1
C
25
−
1
D
19
1
Solution:
We have,
I
n
=
∫
0
4
π
s
i
n
x
s
i
n
(
2
n
−
1
)
x
d
x
Now,
I
20
−
I
19
=
∫
0
4
π
s
i
n
x
s
i
n
(
39
x
)
−
s
i
n
(
37
x
)
d
x
⇒
I
20
−
I
19
=
∫
0
4
π
s
i
n
x
2
s
i
n
x
c
o
s
(
38
x
)
d
x
=
[
19
s
i
n
(
38
x
)
]
0
4
π
=
19
s
i
n
(
4
38
π
)
=
19
−
1