Q.
Consider the following two binary relations on the set A={a,b,c}:R1={(c,a),(b,b),(a,c),(c,c),(b,c),(a,a)} and R2={(a,b),(b,a),(c,c),(c,a),(a,a),(b,b),(a,c)}. Then :
R1={(c,a),(b,b),(a,c),(c,c),(b,c),(a,a)} b,c∈R1 c, a ∈/R1R1 is not symmetric (b,c),(c,a)∈R1(b,a)∈/R1,R1 is not transitive R2={(a,b),(b,a),(c,c),(c,a),(c,a),(a,a),(b,b),(a,c)} ∀(a,b)∈R2(b,a)×R2
Therefore it is symmetric (c,a),(a,b)∈R2(c,b)∈/R2
Therefore R2 is not transitive