<br/><br/>k=Ae−Ea/RT…..(i)<br/>⇒lnk=ln(Ae−E2/RT)<br/>⇒lnk=ln(A)+ln(e−E2/RT)<br/>⇒lnk=ln(A)−RTEaln(e)<br/>⇒lnk=ln(A)−RTEa<br/><br/>
So from this equation, k∝Ea1 and k∝T k increases if Ea decreases and increases if T increases.
Moreover, the relation in exponential can be seen in (i)