Q.
Consider P(x)=x2+(sinϕ−1)x−21cos2ϕ. Let α and β be unequal real roots of the equation P(x)=0 such that (α2+β2) has the maximum value, then non-negative difference of the roots of P(x)=0, is
357
98
Complex Numbers and Quadratic Equations
Report Error
Solution:
Θ Equation has unequal real roots ∴D>0⇒(sinϕ−1)2−4⋅1(2−1cos2ϕ)>0 ⇒sin2ϕ−2sinϕ+1+2(1−sin2ϕ)>0 ⇒−sin2ϕ−2sinϕ+3>0 ⇒(sinϕ+3)(sinϕ−1)<0 ⇒sinϕ=1 Θα2+β2=(α+β)2−2αβ=(sinϕ−1)2−2⋅1⋅(2−1cos2ϕ)=2−2sinϕ ∴ maximum value =4 when sinϕ=−1 ∴cosϕ=0 ∴P(x)=x2−2x=x(x−2) ∴ Difference of roots =2