Q.
Consider a polynomial function f(x)=x5+ax4+bx3+cx2+dx+e. If the line y=2 touches it at x=1 and x=4 where x=4 is also a point of inflection of y=f(x), then
Clearly f(x)=2⇒f(x)−2=0 ∴f(x)−2=(x−1)2(x−4)5 ∴f(x)=(x−1)2(x−4)3+2 ∴f′(x)=2(x−1)(x−4)3+3(x−1)2(x−4)2 =(x−1)(x−4)2[2(x−4)+3(x−1)] =(x−1)(x−4)2(5x−11) ⇒x=511 is a point of local minimum. f(2)=−6,f(3)=−2 2∫6f(x)dx=2∫6((x−1)2(x−4)3+2)dx
Put x−4=t =−2∫2(t3(t+3)2+2)dt=−2∫2(t5+9t3+6t4+2)dt=20∫2(6t4+2)dt=2(56.32+4)=5424