Q.
Consider a biquadratic equation 81x4+216x3+216x2+96x−65=0 whose roots are α,β,γ,δ. Given α,β are real roots and γ,δ are imaginary roots.
The value of γ3+δ3−(α+β)3 is equal to
84
91
Complex Numbers and Quadratic Equations
Report Error
Solution:
81x4+216x3+216x2+96x−65=0 (3xx4+4C1(3x)3(2)+4C2(3x)2(2)2+4C3(3x)(2)3+(2)4=81 (3x+2)4=81 (3x+2)2=9 or (3x+2)2=−9 γ3+δ3−(α+β)3 =(γ+δ)(γ2+δ2−γδ)−(α+β)3 =3−4((3−4)2−3γδ)−(3−4)3 =34⋅3⋅913=952