Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
(C0 + C1)(C1 + C2) ... (Cn-1 + Cn) is equal to
Q.
(
C
0
+
C
1
)
(
C
1
+
C
2
)
...
(
C
n
−
1
+
C
n
)
is equal to
2195
194
Binomial Theorem
Report Error
A
(
C
0
C
1
C
2
...
C
n
−
1
)
(
n
+
1
)
14%
B
(
C
0
C
1
C
2
...
C
n
−
1
)
(
n
+
1
)
n
14%
C
n
!
(
C
0
C
1
C
2
...
C
n
−
1
)
(
n
+
1
)
n
71%
D
None of these
0%
Solution:
(
C
0
+
C
1
)
(
C
1
+
C
2
)
…
(
C
n
−
1
+
C
n
)
=
C
0
(
1
+
C
0
C
1
)
+
C
1
(
1
+
C
1
C
2
)
…
C
n
−
1
(
1
+
C
n
−
1
C
n
)
=
{
C
0
C
1
C
2
...
C
n
−
1
}
(
1
+
C
0
C
1
)
(
1
+
C
1
C
2
)
…
(
1
+
C
n
−
1
C
n
)
=
{
C
0
C
1
C
2
...
C
n
−
1
}
(
n
+
1
)
(
1
+
2
n
−
1
)
…
(
1
+
n
1
)
=
{
C
0
C
1
C
2
...
C
n
−
1
}
(
n
+
1
)
(
2
n
+
1
)
(
3
n
+
1
)
…
(
n
n
+
1
)
=
n
!
{
C
0
C
1
C
2
...
C
n
−
1
}
(
n
+
1
)
n