Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Assume that A i ( i =1,2, ldots ldots ., n ) are the vertices of a regular polygon inscribed in a circle of radius unity then the value of displaystyle∑i=1n-1|A1 Ai+1|2, is
Q. Assume that
A
i
(
i
=
1
,
2
,
……
.
,
n
)
are the vertices of a regular polygon inscribed in a circle of radius unity then the value of
i
=
1
∑
n
−
1
∣
A
1
A
i
+
1
∣
2
, is
3227
211
Complex Numbers and Quadratic Equations
Report Error
A
2n
B
n
C
-n
D
-2n
Solution:
∠
A
1
O
A
i
+
1
=
n
2
i
π
∴
A
1
A
i
+
1
=
2
O
A
1
sin
n
iπ
=
2
sin
n
iπ
∴
i
=
1
∑
n
−
1
∣
A
1
A
i
+
1
∣
2
=
4
[
sin
2
n
π
+
sin
2
n
2
π
+
…
.
+
sin
2
n
(
n
−
1
)
π
]
=
2
[
1
−
cos
n
2
π
+
1
−
cos
n
4
π
+
…
+
1
−
cos
n
2
(
n
−
1
)
π
]
=
2
(
n
−
1
)
−
2
[
(
1
+
cos
n
2
π
+
cos
n
4
π
+
…
)
−
1
]
=
2
n
−
2
−
2
[
0
−
1
]
=
2
n
[
∴
1
+
cos
n
2
π
+
cos
n
4
π
+
…
+
cos
2
2
(
n
−
1
)
π
=
0
n
th
roots of unity ]