Q.
An odd function is symmetric about the vertical line x=a(a>0) and if r=0∑∞[f(1+4ar)]r=8 , then find the numerical value of 8f(1)( where 0<f(1)<1) .
Given that, f(−x)=−f(x)
and f(2a−x)=f(x)
By adding both equations, ⇒f(−x)+f(2a−x)=0
Replace x with (−x) f(x)+f(x+2a)=0....(1)
Replace x with x+2a ⇒f(x+2a)+f(x+4a)=0....(2)
Subtract equation (1) and equation (2) ⇒f(x)−f(x+4a)=0 ⇒f(x)=f(x+4a) ⇒f(x) is a periodic function and its period is 4a ⇒f(1)=f(1+4a)=f(1+8a)
Now, r=0∑∞f(1+4ar)r=8 ⇒[f(1)]0+[f(1+4a)]+[f(1+8a)]2+...........=8 ⇒1+f(1)+[f(1)]2+[f(1)]3+..........=8 ⇒1−f(1)1=8 ⇒f(1)=87 ⇒8f(1)=7