Q.
An infinite cylinder of radius r0, carrying linear charge density λ The equation of the equipotential surface for this cylinder is
1748
181
Electrostatic Potential and Capacitance
Report Error
Solution:
Gaussian surface of radius r and length l According to Gauss’s theorem ∮E.ds=ε0q=ε0λl E(2πrl)=ε0λl
or E=2πε0rλ…(i) ∴V(r)−V(r0)=−∫r0rE.dl=2πε0λlogerr0
For an equipotential surface of given V(r), loger0r=λ2πε0[V(r)−V(r0)] ∴r=r0e−2πε0[V(r)−V(r0)]/λ