Q.
An ellipse intersects the hyperbola 2x2−2y2=1 orthogonally. The eccentricity of the ellipse is reciprocal to th a t of the hyperbola. If the axes of the ellipse are along the coordinate axes, then
Eccentricity of hyperbola =2 ⇒(21)x2−(21)y2=1.... (i)
Eccentricity of hyperbola =2
So, eccentricity of ellipse =1/2
Let equation of ellipse be a2x2+b2y2=1[ where a>b ] ∴21=1−a2b2 ⇒a2b2=21⇒a2=2b2 ⇒x2+2y2=2b2....(ii)
Let ellipse and hyperbola intersect at A(21secθ,21tanθ)
On differentiating Eq. (i), we get 4x−4ydxdy=0⇒dxdy=yx dxdy∣∣at A=tanθsecθ=cosecθ
and on differentiating Eq. (ii), we get 2x+4ydxdy=0⇒dxdy∣∣at A=−2yx=−21cosecθ
Since, ellipse and hyperbola are orthogonal. ∴−21cosec2θ=−1 ⇒cosec2θ=2⇒θ=±4π ∴A(1,21) or (1,−21)
Form Eq. (i), 1+2(21)2=2b2 ⇒b2=1
Equation of ellipse is x2+2y2=2.
Coordinates of foci (±ae,0)=(±2⋅21,0)=(±1,0)
If major axis is along Y-axis, then 21=1−b2a2⇒b2=2a2 ∴2x2+y2=2a2⇒Y′=−y2x ⇒y′(21secθ,21tanθ)=sinθ−2
As ellipse and hyperbola are orthogonal ∴−sinθ2⋅cosecθ=−1 ⇒cosec2θ=21⇒θ=±4π ∴2x2+y2=2a2 ⇒2+21=2a2⇒a2=45 ∴2x2+y2=25, corresponding foci are (0,±1) .