Equation of given curves, x2−y2=4 and x2+y2=42
Let (x0,y0) be point of intersection. ∴ Angle between curves = Angle between tangent at point of intersection.
Now, x2−y2=4
Differentiate w.r.t. 'x' 2x−2ydxdy=0dxdy=yx
At point (x0,y0) m1=y0x0 and curve x2+y2=42
Differentiate w.r.t. 'x' 2x+2ydxdy=0dxdy=−yx
At point (x0,y0) m2=−y0x0
Angle between tangents θ=tan−1∣∣1+m1m2m1−m2∣∣ θ=tan−1∣∣1+y0x0(−y0x0)y0x0+y0x0∣∣ ⇒θ=tan−1∣∣y02y02−x022y0x0∣∣ ⇒θ=tan−1(y02−x022x0y0)=tan−1(42x0y0)
[given, y2−x2=4 satisfied point (x0,y0)] =tan−1(2x0y0)…(i)
Point (x0,y0) lie on curves, so x02−y02=4 and x02+y02=42 ⇒x02=2(1+2) and y02=2(2−1)
So, x02y02=4(2+1)(2−1)=4(2−1)=4 x0y0=2
Put in Eq. (i), θ=tan−1(22) θ=tan−1(1) ⇒θ=4π